
J .  Fluid Mech. (1994), vol. 264, pp .  277-301 
Copyright 0 1994 Cambridge University Press 

277 

Dynamics of an isolated barotropic eddy 
on a beta-plane 

By G E N N A D Y  K. KOROTAEV 
AND ALEXANDER B. FEDOTOV 

Marine Hydrophysical Institute, Sevastopol 335000 Ukraine 

(Received 29 November 1992 and in revised form 12 July 1993) 

The dynamics of a Gaussian isolated barotropic eddy on a P-plane is considered. The 
analytical solution of the evolution of an isolated vortex is constructed by analogy to 
the theory of a point vortex. The results of a numerical experiment are compared with 
the conclusions of the theory for the case of the Gaussian vortex. Characteristics of the 
vortex such as its radius, trajectory of movement, kinetic energy, residual vorticity, and 
the structure of the vortex are discussed. The analysis of the numerical results shows 
that the experimentally determined radius of the vortex, its energy, and residual 
vorticity are in good agreement with the theory. On the other hand there is a difference 
between analytical and experimental values of velocity components, and hence in the 
trajectory of the centre of the vortex. The location of the separatrix of the streak 
function and its saddle point are considered as important characteristics of the 
structure of the vortex. We consider the phenomenon of the generation of the vortex 
sheet connected with the separatrix location as a cause of the difference between the 
experimental and analytical estimates of the velocity of the vortex. 

1. Introduction 
The problem of the evolution of an isolated vortex on a /3-plane has been intensively 

investigated for more than forty years. The interest in this problem is especially strong 
in meteorology, namely concerning tropical cyclone movement. Oceanographers also 
became interested in the dynamics of intensive eddies after the large-scale oceano- 
graphic experiments POLYGON-70, MODE and POLYMODE, where cyclone and 
anticyclone types of eddies were observed. As a result, numerous analytical and 
numerical studies of isolated eddy dynamics were carried out (Adem 1956; Bretherton 
& Karweit, 1975; McWilliams & Flierl 1979; Flierl 1984; Shapiro & Ooyama 1989; 
Cushman-Roisin, Chassignet & Tang 1990; Smith & Ulrich 1990; Smith, Ulrich & 
Dietachmayer 1990). In spite of all these attempts, the physics of eddy evolution are 
still far from completely understood. 

A speculative analytical model similar to that of Flierl (1984) was elaborated by one 
of the present authors (Korotaev 1980a, b, 1988) for the case of a point barotropic 
vortex. This model has a very clear physical meaning but it is based on some 
assumptions which do not have strict foundations. The present work is a further 
development of this model for the case of a continuous initial vorticity distribution, 
and tests the main consequences of the analytical model by means of a numerical 
experiment. 
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2. General premises 
The model of a point-vortex dynamics on the ,&plane, developed in Korotaev 

(1980a, b, 1988), is based on some assumptions briefly discussed below. 
Let a point vortex of intensity To be located at the centre of the coordinate system 

at the initial moment of time. It follows from the law of absolute vorticity conservation 
that 

(2.1) 
at any moment of time, where @ = $(x, y ,  t) is the stream function, x,y and xo,yo are 
Eulerian and Lagrangian coordinates, and S(x) is the Dirac function. 

There are several ways to prove that a cyclonic (anticyclonic) point vortex will move 
to the north-west (south-west). The point vortex will involve a certain volume of 
surrounding fluid in its translating movement, as in the case of a moving cylinder with 
high enough circulation (Batchelor 1967). If the relative vorticity of the fluid involved 
in the translating movement initially equals zero, fluid particles after meridional 
displacement will have non-zero relative vorticity. The sign of this vorticity is opposite 
to To, according to (2.1). Therefore, if the vortex meridional displacement is large 
enough, the vortex should be surrounded by a vorticity ring of opposite sign. 

Heterogeneity of the relative vorticity distribution inside this ring will be of the order 
of PRO, where R, is the ring radius. At the same time the mean value of the vorticity 
may be estimated as pp if p is the meridional displacement of the vortex. Thus, if the 
vortex travels far enough along the meridian so that p % R,, it should be surrounded 
by a ring with approximately constant relative vorticity with sign opposite to To. 

Homogenization of the vorticity inside the ring, which is henceforth called the 'trap 
zone', will also be promoted by small but finite viscosity. In fact, particles inside the 
trap zone rotate around the vortex with different angular velocities. After some 
rotations vorticity gradients will be large enough, and even small viscosity will 
effectively homogenize the vorticity distribution. According to Korotaev (1980a, b, 
1988) the boundary of the trap zone should be a separatrix of the stream-function field 
in the moving reference frame. 

In the very early stage of its evolution the vortex radiates Rossby waves with a 
continuous spectrum. These Rossby waves allow the vortex to adjust to a certain quasi- 
equilibrium state. In the quasi-equilibrium state the vortex radiates only those waves 
that are quasi-stationary in the frame moving with it. 

The meridional component of the vortex propagation velocity is directly related to 
the radiation of Rossby waves. In fact, the vortex uses up energy in radiating waves, 
and should decrease in intensity. According to (2. l), this corresponds to its meridional 
displacement. 

Based on the qualitative description presented above, a model of the vortex 
evolution was developed in Korotaev (1980a, b, 1988). Comprehensive analysis of the 
point-vortex model shows that in reality the type of initial vorticity distribution is not 
very important and all the previous arguments may be applied to the case of 
continuous vorticity distribution. 

V2$ + Pv = To S ( X 0 )  S(Y0) +Pro 

3. Mathematical formulation of the problem 

is used: 
The usual equation of the absolute vorticity conservation in terms of the $-function 
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where a(f,g)/a(x, y )  is the Jacobian. Let us change to a moving coordinate system with 
its origin at the eddy centre, where 

and U, V are eddy velocity components. Let the stream function at the initial time have 
the form 

$0 = -A  e-(r/tY = -;ppj7r e-(r/t)2 7 (3.3) 

where 
- 4A y =- 

p 1 2  
(3.4) 

is the so-called 'rest latitude' (McWilliams & Flier1 1979). 

for the dependent and independent variables : 
The model equations are non-dimensionalized by the following characteristic scales 

I X , Y  - 1, 7 Y r ,  

t N y;/pla, u N p&!, 
7/? - p12yVr, v - p&!, 

where p is the eddy displacement along the meridian. 
Equation (3.1) in terms of non-dimensional parameters is as follows: 

(3.5) 

The parameter e which arises in (3.6) is equal to 

e = (l/pr)'. (3.7) 

We shall consider this parameter to be small since we are interested in the nonlinear 
case. This case corresponds to the usual geophysical situation when the eddy 
translation speed is smaller than the speed of particle inside the eddy. The proposed 
scaling (3.5) and the small-parameter expression (3.7) follow from Korotaev (1988). As 
explained in $2, the trap zone boundary is assumed to be the separatrix of the stream- 
function field in the moving coordinate system (streak function, according to 
McWilliams et al. (1981)): 

Different types of solution will be constructed inside and outside the trap zone. 
The boundary condition on the separatrix follows from continuity of the normal 

velocity component and pressure. A quasi-stationary regime is assumed, which is why 
both conditions may be expressed in terms of a stream function with sufficient 
accuracy : 

Y = ++€2Uy-€3VX. (3.8) 

++eYJy--s3vx = 0, [El = o at Y = R(O, t ,  €1, (3.9) 

where Y and 0 are the polar coordinates and r = R(O, t ,  6 )  is the separatrix equation. 
Square brackets indicate the difference between values just inside and outside the trap 
zone. An additional restriction is placed on the separatrix form: it is assumed that the 
separatrix has only one saddle point and that the saddle point has X-coordinate equal 
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to zero and is located in the upper half-plane for a cyclonic eddy. This restriction may 
be formulated in the following form: 

(3.10) 

at r = R(& t ,  c).  

moving reference frame : 
Conditions (3.2) also should be presented in a non-dimensional form and in the 

The final condition is 
$ +- const ( t )  when r --f 00. 

(3.11) 

(3.12) 

Equation (3.6) with conditions (3.9)-(3.12) yields the final mathematical formulation 
of the problem. Note that this mathematical formulation does not provide an exact 
(even in a strict asymptotic sense) solution of the initial value problem for equation 
(3.6): some fine-scale features of the exact solution are ignored. But the solution that 
will be constructed is assumed to provide appropriate asymptotics for the eddy 
structure and velocity when its displacement along the meridian is much more than a 
radius. The numerical solution of (3.1) will serve to test the basic assumptions 
presented above. 

4. Analytical model of the eddy evolution 
The above problem is resolved by a perturbation expansion using an asymptotic 

series through en (Van Dyke 1964). Some additional assumptions are needed because 
the problem still has a non-unique solution. 

can be found from the 
equation 

The zero-order approximation of the stream function 

Let us choose the solution of (4.1) in the form 

v"o + y = VZ$O (4.2) 

is the initial stream-function field (3.3) inside the trap zone and $o = 0 outside it. 
which has the non-dimensional form 

(4.3) $0 = -1 -r2 4e * 

On the boundary of the trap zone $, satisfies the boundary conditions 

(4.4) 

The problem (4.2), (4.4) with $' from (4.3) has a unique radially symmetrical 

ago - 
$0 = an - 0, 

which follow from (3.9). 

solution : 

The trap zone is a circle with radius R,: 
(4.5) 

R, = (In l/y)i. ( 4 4  

$, = i{7(1 -r~2)-e-~~+pln 1/71. 



Dynamics of an isolated barotropic eddy on a beta-plane 28 1 

The first-order approximation satisfies the equation 

inside of the trap zone, and the equation 

(4.7 a) 

(4.7b) 

outside it, and a satisfactory choice of solution is 

= 0 (4.8) 

inside as well as outside the trap zone. 

the trap zone. Equation (3.6) has the form 
The second-order approximation must be considered separately inside and outside 

inside the trap zone, and 

(4.9a) 

(4.9b) 

outside it. 
The first of the boundary conditions (3.9) yields 

$, = - Uy at r = Ro. (4.10) 

The simplest solution of (4.9), (4.10) is V2$2 = 0 and 

r < R, 
(4.11) 

$ 2 =  {:, -lnr/R,--sin@, r UR; r > R,. 
r 

This solution satisfies condition (3.1 1) for the appropriate expansion order. The 
unknown r (residual vorticity) may be found from condition (3.10) : 

r= -4nR, U. (4.12) 

It is interesting to note that (4.12) corresponds to a more well-known law which arises 
in the problem of the circulation around a body with a sharp edge (Batchelor 1967). 

Finally, the second of the boundary conditions (3.9) gives 

and using (4.5), (4.6), (4.11), (4.12) we find 

(1 -sin@). 
2u 

R, = 
7ln ( 1 / 8  

(4.13) 

(4.14) 

Thus, the solution (4.1 1) with (4.12), (4.14) satisfies all the conditions except (3.12) 
because of the non-uniformity of the stream-function expansion. Stretched coordinates 
should be used for the stream-function expansion far away from the trap zone. 
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Let us introduce stretched coordinates X, Y in such a way that 

x= EX, Y = Ey. 

Assume also that @ = e2$. Then we have 

where the Laplacian is also given in new coordinates. 
The lowest-order approximation will satisfy the equation 

av2$ a$ - u p + -  = 0. ax ax (4.15) 

Equation (4.15) has a solution in the form 

because the eddy moves in undisturbed water. 

(4.16) is written in the following form: 
Bearing in mind the logarithmic asymptotic of (4.1 1) when r +  00, the solution of 

+ const, 
J,,+,(hp) cos (2n + 1) 0 

2n+ 1 
(4.17) 

where h = (- 1/U)i and p2 = X 2 +  Y 2 ;  No and A,,, are the Neuman and Bessel 
functions. 

Equation (4.17) satisfies (3.12) and also the Sommerfeld condition which forbids 
energy flux from infinity; (4.17) follows from that presented in Flier1 (1984) and 
corresponds to the singular vorticity at the origin of the coordinate system. Equation 
(4.17) satisfies the matching conditions (Van Dyke 1964) with (4.1 1). The constant in 
(4.17) contains In e-type terms. 

The third-order approximation of the stream function inside the trap zone satisfies 
the equation 

Outside the trap zone but just next to it we have 

The simplest solution 
@3 = vx 

(4.18a) 

(4.18 b) 

(4.19) 

inside as well as outside the trap zone and R, = 0 satisfy (4.18) and all the conditions 
on the trap-zone boundary. 

Bearing in mind that (4.17) has the asymptotic limit 

r r 3 - -lnp+-+cos@, 2x 2x 
(4.20) 
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when p --f 0, the matching condition gives 

(4.21) 

It is only necessary to obtain the fourth-order approximation inside the trap zone. 
The equation of this approximation is 

The simplest solution of (4.22) is 

The first of the boundary conditions yields 

7,b4 + UR, sin 0 - VR, cos 0 = 0 

(4.23) 

(4.24) 

at r = R,. 
The solution of (4.23), (4.24) may be presented as the sum of three terms: the first 

is radially symmetric, the second is proportional to sin 0 and the last is proportional 
to cos 2 0 .  We are particularly interested in the term proportional to sin 0 because it 
describes a dipole, which should transport the eddy. 

Let us present the solution of (4.23), (4.24) in the form 

$, = $,(r) sin 0 +other terms. (4.25) 

Then 
d 1 d d$o 

r -  
1 d d$ 1 dr rd r  dr 

_-- 
$s = - r .  (4.26) - - r L - - $  - 

rdr  dr r2 - d$O 
dr 

Multiply (4.26) by rd$,/dr and write it as 

If we integrate both parts of (4.27) from 0 to R, using the boundary condition 

at r = R, 
4U2 d2$,- 4 u 2  

" = p2 ln2 (l/p) dr2 pln (l/p) 

the following restrictions arise : 

R, $s(Ro) pln 1 /p = 2 p" r$, dr 
0 

(4.27) 

(4.28) 



284 

or 

G .  K, Korotaev and A .  B. Fedotov 

T U =  2 r r r q h 0 d r  = [/+ads = T[l-y(l+ln(l/y)+$ln2(l/y)]. n: (4.29) 

This equation together with (4.12) makes it possible to determine the U-component of 
the eddy velocity. Then using (4.21), the V-component may be found. The result is 

(4.30) 

V =  ((in3 1/y)[1 -y(1+1n l/y+$ln2 l/y)l)i, (4.3 1) 

r = n:{(lni 1/p)[1 -y(l +In l/p+$ln2 l/p)])l>;. (4.32) 

Formulae (4.30)-(4.32) together with (4.6) and (4.12) provide a full description of the 
eddy structure and dynamics in the asymptotic case t:+O. Note that time does not 
appear implicitly in (4.6), (4.30)-(4.32) or in the expressions for the stream function 
inside and outside the trap zone. This follows from the quasi-stationarity of the eddy 
evolution and indicates that the vortex characteristics do not depend on the way in 
which the vortex achieved its latitude. The function y( t )  follows from the equation 

which is written in non-dimensional form according to scaling (3.5). This indicates that 
the quasi-stationary approximation is self-consistent for large enough p. When p tends 
to zero, V(y) tends to infinity, and the quasi-stationary approximation does not hold. 

It follows from the analytical solution that the kinematics of the eddy is very specific. 
The eddy itself moves to the west relative to the surrounding fluid and at the same time 
it is transported to the north by the broad flow induced by a Rossby wave. This appears 
to be a contradiction but has a simple explanation: the eddy is situated exactly on the 
same phase of the Rossby wave. Let us mention one more peculiarity of the solution 
(4.30), (4.31). As a coefficient of the asymptotic expansion, V(p) is much greater than 
U(y). For example U (0.5) = 0.05 but I/ (0.5) = 0.32. This means that the zonal 
velocity of the eddy should be much greater than its meridional velocity only when c 
tends to zero. For small but finite values oft: the meridional component may be larger 
than the zonal one. Such paradoxes may arise when one uses asymptotic series (Van 
Dyke 1967). 

5. Physical sense of the solution 
The model described in the previous section has a very simple physical meaning. 

Equation (4.29) presents the balance between the Zhukovsky-Kutta force (left side) 
and the Coriolis resultant force arising due to the p-effect. The Zhukovsky-Kutta force 
acts on the eddy because of the pressure difference on the boundary of the trap zone. 
This force is exactly the same as in the case of a moving cylinder with circulation 
(Batchelor 1967). 

The Coriolis resultant force arises because particles in the upper and the lower parts 
of the eddy experience a slightly different Coriolis force action due to the /3-effect. It 
seems that Rossby was the first who noticed this effect (Rossby 1948), which is why this 
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force can be called a Rossby force. Thus, the U-component of the eddy movement may 
be found directly from the Zhukovsky-Kutta and Rossby force balance together with 
(4.12). 

The next very clear physical result is related to the eddy energy variation with time. 
We have that 

= ruv. dE - 
dt (5.2) 

But, on the other hand, if we calculate the energy flux related to Rossby waves radiated 
by the eddy, namely 

where C,,, C,, are the group velocity components, the expression for the wave energy 
density 6' follows from asymptotics of the stream function (4.17) when p tends to 
infinity. We have 

I = - 8(C,, dx - C,, dy), s 

if x<O co 
Thus, 

Finally it follows that 

Thus 
I = ruv. 

dE 
-- - I ,  dt 

(5.3) 

(5.4) 

and the decrease in eddy energy is connected with energy radiation by Rossby waves. 
Another interpretation of (5.4) is that the eddy energy decrease arises from the work 
done against the wave drag force. 

It is possible to calculate the enstrophy balance for the eddy and the wave field, with 
the result that the eddy enstrophy decrease is much greater than the Rossby wave 
enstrophy flux. The explanation of this is obvious in principle. Formula (4.6) yields a 
decrease in the eddy radius with increasing 7. Thus, there should exist a leakage of 
eddy vorticity, and a vorticity filament should form along one of the separatrix 
branches and simultaneously provide the enstrophy balance. 

The clear physical sense of the eddy dynamics reflects meridional momentum and 
energy equations of lower order. In fact all three expressions (4.30)-(4.32) may be 
deduced directly from momentum projection and energy equations based on the zero- 
order stream-function approximation inside the trap zone, equation (4.6) for the trap- 
zone radius, equation (4.12) for residual vorticity, and expression (5.3) for the 
Rossby wave energy flux as in Korotaev (1980). This is usual when high-order 
restrictions like (4.28) reflect much lower-order conservation laws. The model is robust 

10 FLM 264 
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in this sense, and most high-order peculiarities depend on the fact that a vortex carries 
fluid to the north, conserving absolute vorticity. 

6. Numerical experiments 
The numerical solution of (3.1) is obtained using a pseudo-spectral model (Orszag 

1971) with N = 128 spatial quadrature points in each horizontal direction. The domain 
is square of width 2n, and the flow is periodic on this interval. Thus, the model 
wavenumber grid has unit spacing and a maximum modulus K,,, slightly less than 
i N  = 64. Three values of /3 were chosen, ,8 = 0.5, 1.0, 10;. To avoid strong oscillations 
in the relative vorticity fields at the smallest grid scales, hyperviscosity with v = lo-' 
was used as a damping in (3.1). 

The initial field for $(x,y) was constructed using (3.3) with A = - 1 and 1 = 10-f. 
This gives more than 12 grid points for the vortex diameter at the initial moment of 
time. 

As was mentioned above, periodic boundary conditions are used. This permits us to 
exclude the interaction of the vortex with lateral boundaries, but then the problem of 
vortex self-interaction arises. This problem will produce differences between the 
numerical and analytical vortices, especially after they have travelled a distance of 
order of the size of the domain. 

As we have chosen the initial amplitude of the vortex in (3.3) with A = - 1 and 1 = 
O.lf, from (3.4) we havey, = -40//3, which forp = 0.5, l  .O, and lOf, is equal respectively 
to -80, -40, and - 12.65. As noted above, the vortex may only just be considered 
isolated if its distance from the initial position is more than 2n. But if p = 2n, then 
7/yr  = 0.08 and 0.15 for /3 = 0.5 and 1.0, respectively. Consequently for small enough 
values of p and N = 128 it is possible to obtain an analytical solution only for small 
y/yr, which is why most attention will be paid here to the case /3 = 10:. In this case we 
may anticipate coincidence of the theory and the experiment up to y/yr = 0.5, but 
another problem arises. The parameter e in (3.7) for this value of p is equal to 0.4 and 
so may hardly be assumed small. 

For E = 0.4 an artificial paradox arises. As discussed at the end of $4, the meridional 
component of the velocity should be about 2.5 times higher than the zonal one. The 
same result was obtained in the experiment by McWilliams & Flier1 (1979) for 
example. The theory presented in $4, predicts that - V/U < 1 should occur for much 
smaller values of E .  Of course, the problem of the applicability of an asymptotic theory 
arises for such a big value of E .  Taking into account the discussion in 9 5 on the robust 
properties of the model, we hope that the asymptotic expansion presented in 93, will 
work even for such a large value of E .  Because of the great number of possible 
uncertainties in the analytical and numerical solutions, we will try to discuss the 
method of comparison in detail. We hope that such an approach will guarantee 
reproducibility of the results for other investigators. 

7. The structure of the vortex 
The theory presented in $ 3 predicts some specific features of the eddy structure which 

may be tested using numerical results. Based on the theory the main features of the 
eddy structure are : approximately radially symmetric stream function and vorticity 
distribution, a positive-vorticity ring inside the trap zone not only at the very beginning 
of the eddy evolution, the separatrix of the streak function as a boundary of the trap 
zone, and a saddle point on the separatrix just to the south of the eddy centre. 



Dynamics of an isolated barotropic eddy on a beta-plane 287 

(b) 

-0.5 

-1.0 

-1.5 

1.0 

0.5 

0 

-0.5 
1.9 2.4 2.9 3.4 

S." 

1.9 2.4 2.9 3.4 

FIGURE 1. Evolution of the streak function with the motion of a vortex on a /3-plane. Times 
shown are: (a) t = 7; (b) t = 9; (c) t = 12; (d )  t = 17. Contour interval 0.05. 

We begin the analysis presented here by considering the set of streak functions Y = 
Ijl+ Uy- Vx for different time moments, where U and I/ are velocity components 
determined from the trajectory of the centre of the vortex (figure la-d). This figure 
shows a typical picture of the flow near the separatrix, i.e. the position of the saddle 
point is almost south of the centre of the vortex in spite of the fact that the V- 
component of the velocity is greater than the U-component. This shows that the vortex 
moves, relative to the surrounding fluid, almost exactly to the west, in good agreement 
with the analytical model. Twice during the experiment we observed the appearance of 
the second saddle point: once at t = 9 (figure 1 b) and again in the final stage of the 
experiment. The second saddle point was observed to the east of the centre of the 
vortex in both cases. We shall discuss the first case below. The second one occurs when 
the influence of the exhausted vortex filament is so strong that it would be wrong to 
consider the vortex as an isolated one. 

To compare the distribution of the relative vorticity inside the trap zone, meridional 
sections from the numerical experiment and from the theory are presented as a function 

10-2 
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FIGURE 2 (a, b). For caption see facing page. 

of radius at t = 7, 9, 12, 17 (figure 2). There is good agreement between theory and 
numerical experiment in the negative-vorticity core. At all times, the negative-vorticity 
core is surrounded by a positive-vorticity ring. This is of course the consequence of 
absolute vorticity conservation. 

The agreement between theory and numerical experiment in the positive-vorticity 
ring is expected for initial periods ( t  = 7,9). The discrepancy between them at t = 12 



Dynamics of an isolated barotropic eddy on a beta-plane 289 

0 

h 
Y .- 
.%-I 
0 -10 

> 
Y 

8 

-20 

-30 

-40 

- (4 

lo:******* * ** **** 1 :" 
. 

I . I I I 
-1.2 -0.8 -0.4 0 0.4 0.8 1.2 

v * 

10 

0 

h 
Y .I 

.- 0 -10 

> 
Y 

8 

-20 

I I I . I I 

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 
Radius 

FIGURE 2. Meridional sections of relative vorticity through the centre of the vortex. Experimental 
values (*) versus theory (solid line). Times shown are: (a) t = 7;  (b) t = 9; (c )  t = 12; (d )  t = 17. 

is caused by non-stationarity in the vorticity field. In addition, diffusion of the relative 
vorticity is obvious at t = 17. The most probable source of diffusion intensification is 
chaotic fluid particle movement near the separatrix. Outside the theoretically predicted 
trap-zone boundary the relative vorticity from the numerical experiment tends to zero. 

The azimuthally averaged relative vorticity (figure 3) confirms the deductions 
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FIGURE 3 (a, b). For caption see facing page. 

presented above about the existence of a positive-vorticity ring and the decrease of 
vorticity outside the trap zone. This decrease is not so fast in the numerical experiment 
as in the analytical theory because of the input of the vortex sheet. Vorticity diffusion 
is also presented in figure 3 at t = 17. All these observations confirm the assumption 
about the existence of the trap zone inside the separatrix and the zero-relative-vorticity 
approximation outside it. 

The horizontal structure of the relative-vorticity distribution and the separatrix 



Dynamics of an isolated barotropic eddy on a beta-plane 

10 

0 

;? 

0 
+I 
.d 

'.$ -10 

$ 
-20 

-30 

0 0.5 1 .o 1.5 2.0 

rlRo 

29 1 

~~ 

0 0.5 1.0 1.5 2.0 

r/Ro 

FIGURE 3. Experimental angle-averaged relative vorticity as a function of radius (asterisks connected 
by the solid line), the theoretical result (solid line), and the experimental values of relative vorticity 
inside the trap zone (small dots). Times shown are: (a) t = 7; (b) t = 9 ;  (c)  t = 12; (d )  t = 17. 

position are presented on figure 4. The negative-vorticity core and the ring of positive 
vorticity inside the trap zone are seen on this figure. The ring of positive vorticity is not 
homogeneous as suggested by the theory but contains a set of local maxima. Usually 
two maxima are observed as at t = 9 and 12. The most probable reason for maxima 
formation is a low rotation velocity near the separatrix. When the rotation velocity is 
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FIGURE 4. Evolution of the relative vorticity with the motion of the vortex; the times shown are the 
same as in figure 1. Negative values - dashed isolines, positive values - solid isolines. Contour interval 
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FIGURE 5. Theoretical residual vorticity as a function of p (solid line) and experimental values (*) 

calculated from (7.1) for t = 1,2,. . . ,17. 
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close to zero the process of vorticity homogenization is blocked. Non-homogeneity of 
positive-vorticity distribution inside the trap zone influences the negative-vorticity 
distribution in the eddy core and produces anisotropy at some time moments such as 
at t = 9 in figure 4. 

Positive vorticity maxima compensate the positive vorticity deficit which is seen on 
the meridional sections on figure 2, at t = 12. To illustrate this the residual vorticity 
was calculated by integration over the trap zone. The residual vorticity is determined 
here as 

where w(x, y ,  p) = V2$, rc is the radius vector of the eddy centre and R, = Z(ln lyr/A)i 
according to (4.6). We prefer to use the y-coordinate of the vortex centre, p, instead of 
time, as it is predicted by the analytical theory. The coordinate p is determined from 
the numerical experiment. Figure 5 presents the residual vorticity dependence in terms 
of p according to (7.1) and from the theory (expression (4.32)). The asterisks on figure 
5 correspond to t = 1,2,. . . . The agreement between the theory and the experiment 
after t 3 6 is quite good, showing that in spite of inhomogeneity, the averaged value 
of the positive vorticity inside the trap zone is very close to the analytical solution. 

Another characteristic of the vortex structure which may be tested from the 
numerical experiment is the trap-zone radius. A reasonable choice for the trap-zone 
radius is the distance from the vortex centre to the separatrix saddle point. The 
theoretical value R, as a function of pis plotted together with R,, the distance between 
the centre of the vortex and the saddle point of the separatrix, on figure 6. The value 
of R,, the distance between the centre of the vortex and the maximum value of dw/dy 
along the meridional section in the southern part of vortex, is also shown on the figure. 
Figure 6 shows quantitative agreement among all curves and confirms that the 
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FIGURE 6 .  Theoretical radius of the trap zone R, (solid line) compared to estimates of vortex radius 
from the experiment: R, (asterisks connected by solid line) and R, (dashed line) for t = 1,2, . . . ,17. 
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FIGURE 7. Extremum values of the relative vorticity as a function of the drift of the vortex, 7, from 
its initial location for t = 1,2,. . . ,17 (*), together with the theoretical result (solid line). 

boundary of the trap zone is a line of sharp relative-vorticity variations. The cases of 
strong variations of R, which are apparent in figure 6 correlate with strong saddle- 
point displacements from the usual southern position and will be discussed below. 

The next plot (figure 7) illustrates the extremum values of the relative-vorticity 
umaz(y) together with the theoretical line. A linear law umaz(y) = u, , , (O) -~~  
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FIGURE 8. Experimental estimates of the kinetic energy of the vortex for t = 1,2,. . . ,17 (*) and 

the theoretical curve as functions of 7. 

obviously follows from the numerical experiment. This result supports an assumption 
of 92 that the vortex should involve a certain volume of surrounded fluid in the 
translating movement. Finally, figure 8 shows the integrated energy of the vortex from 
the theory and experiment. The theoretical values are calculated according to (5.1) and 
the experimental ones through the formula 

Iy-ry,I < R,. 
Agreement between theory and experiment looks perfect. As was mentioned in 96, this 
is indirect support for Rossby wave radiation. Thus the experimental vortex structure 
is in general in good agreement with the theory. The main difference between the 
theoretically predicted vorticity field and the experimental one is in the ring of positive 
vorticity, where the simulated vorticity field is inhomogeneous and the trap-zone 
boundary is not so sharp. But apart from this the residual vorticity, the vortex energy, 
the saddle-point position, and the vortex radius are in good agreement with the theory. 

8. The vortex sheet 
The most significant feature not reproduced by the theory but appearing in the 

experiment is vortex sheet formation (figure 4). The source of the vortex sheet is 
qualitatively obvious. In fact, both the theory and the experiment show a decrease in 
the trap-zone radius when the vortex moves along the meridian. This is a reason to 
expect that there should be a leakage of positive relative vorticity from the trap zone 
into the surrounding fluid. The experiment demonstrates this phenomenon and shows 
that the leakage of relative vorticity occurs through the saddle point along the 
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separatrix. Figure 4 shows quasi-one-dimensional vortex sheet formation along the 
separatrix branch. Some inhomogeneity of the vorticity distribution along the vortex 
sheet also is observed on figure 4. This inhomogeneity is related to spontaneous leakage 
of positive-vorticity blobs of the trap zone and this occurs just when the separatrix 
saddle-point position is shifted from the southern location and sharp variation of R, 
is observed. 

It is well known (Batchelor 1967) that a one-dimensional vortex sheet is unstable and 
the phenomenon of quasi-periodic rolling of this structure is observed in the 
experiment. 

9. Kinematic analysis 
The velocity components of the vortex movement were used to determine the 

separatrix position. Here we shall analyse in detail the vortex trajectory and its velocity 
variation. The experiment under consideration with p = 10; has the same initial 
parameters as the experiment by McWilliams & Flier1 (1979) and it is convenient to 
compare vortex trajectories from these two experiments (figure 9). We can see some 
correspondence between the two experiments. First, we shall concentrate on the 
dependence of the velocity of the vortex on the displacement of its centre along the 
meridian. 

In the theory presented in 0 3 the vortex velocity is the sum of its own velocity relative 
fluid particles and the translation velocity which translates the vortex as a whole 
together with surrounding fluid particles. Bearing in mind this idea, the background 
translation velocity was calculated based on numerical experiment data. It was 
calculated as an average velocity over the trap zone after removing all the relative 
vorticity from this zone. Thus, we posed 

The stream function $I.tr was found from the equation 

V V t r  = W t r ,  

and then the translation velocity components U,,, I/,, were determined using averaging 
over the trap zone. In contradiction with the theory neither component is zero. It is 
natural to suppose that this is related to the vortex sheet formation and the influence 
of irregular background vorticity which arises due to the energy and enstrophy lost by 
the vortex. But in spite of this contradiction we can test the assumption that the vortex 
velocity is a sum of its own and the translation velocities. 

Figure 10 shows U-components of the vortex velocity determined from the trajectory 
and the vortex’s own velocity calculated through the formula (4.30) plus the translation 
velocity. The theoretical value of the vortex velocity does not differ very much from the 
experimental one but is systematically higher. Note that the difference between theory 
and experiment decreases as y increases. 

Figure 11 presents the I/-components of the vortex velocity. The translation 
velocity and the velocity estimated from the trajectory fit satisfactorily. This confirms 
the idea of the mechanism of vortex motion as the sum of its own and translation 
velocities. At the same time the analytical estimation of the V-component is 
systematically higher than that determined from the experiment (figure 11). But again 
the difference between the theory and experiment decreases with the growth of 7. So 
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FIGURE 10. Experimental values of the U-component of the velocity of the vortex (*) versus U, + U,, 
(solid line), where U, is the theoretical value and U,, is the U-component of the translation velocity. 

it is possible to suppose that the discrepancy between theory and experiment is related 
to the rather large value of e when p = 10;. The theory works well when the vortex 
radius is smaller than the length of radiated Rossby waves. This condition is more 
appropriate for larger p when R, decreases. 
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FIGURE 11. Theoretical values of the V-component of the velocity as a function of p (solid line), 
translation velocity (dashed line), and experimental values of the trajectory (solid line with asterisks). 
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Now let us return to figure 9 where the vortex trajectory from the theory and 
numerical experiment is presented. The real vortex trajectory from the numerical 
experiment is quite different from the one predicted by the analytical theory. But if we 
exclude the U-component from the vortex translation and make an appropriate 
trajectory correction, the correspondence between the theory and the experiment turns 
out to be acceptable. At the same time the theoretical vortex displacement exceeds the 
experimental one because the theoretical approximation does not apply at the initial 
time. 

10. Discussion 
The results of analytical and numerical investigations of isolated-vortex kinematics 

and dynamics confirm our main assumptions. The vortex structure is reproduced from 
the numerical solution well enough, including the existence of the trap-zone, relative- 
vorticity distribution, its evolution with the meridional position of the vortex, the 
separatrix as a boundary of the trap zone and the saddle-point location. Through the 
estimates of residual vorticity and the zonal component of the vortex propagation 
velocity, the hypothesis about the relation between relative vorticity, trap-zone radius 
and the vortex’s own velocity (4.12) is confirmed indirectly. The same results confirm 
the balance between Zhukovsky-Kutta and Rossby forces (4.29). Estimates of the 
vortex propagation velocity vector from the experiment also support the idea that the 
vortex translation is the sum of its own velocity directed to the west and the translation 
velocity induced by the background vorticity. 

Good agreement between analytical and numerical solutions is observed after a 
relaxation period, which corresponds to a displacement of the vortex along the 
meridian of approximately one-and-a-half or two diameters from the initial position. 
At the same time the numerical experiment demonstrates some additional charac- 
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teristics of the vortex which are not prescribed by the analytical solution, namely 
inhomogeneity of the ring of positive vorticity and vortex sheet formation resulting 
from vorticity leakage through the saddle point of the separatrix. The non-homogeneity 
of the ring of positive vorticity does not provide a strong variation of integral 
characteristics of the vortex, as seen from the residual vorticity and energy estimates. 
But the vortex sheet obviously influences the vortex kinematics because of the large 
input to the background vorticity distribution. The irregularity of the background 
vorticity distribution resulting from an enstrophy cascade to small scales does not give 
us an opportunity to estimate the exact contribution of the vortex sheet to the 
translation velocity of the vortex, but it seems probable that the zonal component of 
the translating velocity may be explained in terms of the influence of the vortex sheet. 
Unfortunately, the same circumstances also prevent us from testing the Rossby wave 
radiation phenomenon. 

Additional numerical experiments carried out with /3 = 1 and 0.5 confirm the 
conclusions presented above. But we do not present the results of those calculations 
here because the relation between the domain size and the distance to the rest latitude 
is so small that the lifetime of the theoretically prescribed regime is too short. However, 
there is one more point we should like to mention. When we use the scaling prescribed 
by the analytical theory, characteristics such as the non-dimensional radius of the trap 
zone, the residual vorticity and the vortex’s own velocity components almost coincide 
for the different values of /3 mentioned above. 

The last remark concerns the functional dependence of the initial vorticity 
distribution. It is quite evident that the analytical model may easily be applied to a very 
broad class of initial vorticity distributions. 
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